Module futureexpert.checkin
Contains the models with the configuration for CHECK-IN.
Classes
class BaseConfig (**data: Any)
-
Expand source code
class BaseConfig(BaseModel): """Basic Configuaration for all models.""" model_config = ConfigDict(extra='forbid')
Basic Configuaration for all models.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.Ancestors
- pydantic.main.BaseModel
Subclasses
Class variables
var model_config
class CheckInResult (**data: Any)
-
Expand source code
class CheckInResult(BaseModel): """Result of the CHECK-IN. Parameters ---------- time_series: builtins.list Time series values. version_id: builtins.str Id of the time series version. Used to identifiy the time series """ time_series: list[TimeSeries] version_id: str
Result of the CHECK-IN.
Parameters
time_series
:builtins.list
- Time series values.
version_id
:builtins.str
- Id of the time series version. Used to identifiy the time series
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.Ancestors
- pydantic.main.BaseModel
Class variables
var model_config
var time_series : list[TimeSeries]
var version_id : str
class Column (**data: Any)
-
Expand source code
class Column(BaseConfig): """Base model for the different column models (`DateColumn`, `ValueColumn` and `GroupColumn`). Parameters ---------- name: builtins.str The original name of the column. name_new: typing.Optional The new name of the column. """ name: str name_new: Optional[str] = None
Base model for the different column models (
DateColumn
,ValueColumn
andGroupColumn
).Parameters
name
:builtins.str
- The original name of the column.
name_new
:typing.Optional
- The new name of the column.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.Ancestors
- BaseConfig
- pydantic.main.BaseModel
Subclasses
Class variables
var model_config
var name : str
var name_new : str | None
class DataDefinition (**data: Any)
-
Expand source code
class DataDefinition(BaseConfig): """Model for the input parameter needed for the first CHECK-IN step. Parameters ---------- remove_rows: typing.Optional Indexes of the rows to be removed before validation. Note: If the raw data was committed as pandas data frame the header is the first row (row index 0). remove_columns: typing.Optional Indexes of the columns to be removed before validation. date_columns: futureexpert.checkin.DateColumn Definition of the date column. value_columns: builtins.list Definitions of the value columns. group_columns: builtins.list Definitions of the group columns. """ remove_rows: Optional[list[int]] = [] remove_columns: Optional[list[int]] = [] date_columns: DateColumn value_columns: list[ValueColumn] group_columns: list[GroupColumn] = []
Model for the input parameter needed for the first CHECK-IN step.
Parameters
remove_rows
:typing.Optional
- Indexes of the rows to be removed before validation. Note: If the raw data was committed as pandas data frame the header is the first row (row index 0).
remove_columns
:typing.Optional
- Indexes of the columns to be removed before validation.
date_columns
:DateColumn
- Definition of the date column.
value_columns
:builtins.list
- Definitions of the value columns.
group_columns
:builtins.list
- Definitions of the group columns.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.Ancestors
- BaseConfig
- pydantic.main.BaseModel
Class variables
var date_columns : DateColumn
var group_columns : list[GroupColumn]
var model_config
var remove_columns : list[int] | None
var remove_rows : list[int] | None
var value_columns : list[ValueColumn]
class DateColumn (**data: Any)
-
Expand source code
class DateColumn(Column): """Model for the date columns. Parameters ---------- format: builtins.str The format of the date. """ format: str
Model for the date columns.
Parameters
format
:builtins.str
- The format of the date.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.Ancestors
- Column
- BaseConfig
- pydantic.main.BaseModel
Class variables
var format : str
var model_config
class FileSpecification (**data: Any)
-
Expand source code
class FileSpecification(BaseConfig): """Specify the format of the CSV file. Parameters ---------- delimiter: typing.Optional The delimiter used to separate values. decimal: typing.Optional The decimal character used in decimal numbers. thousands: typing.Optional The thousands separator used in numbers. """ delimiter: Optional[str] = ',' decimal: Optional[str] = '.' thousands: Optional[str] = None
Specify the format of the CSV file.
Parameters
delimiter
:typing.Optional
- The delimiter used to separate values.
decimal
:typing.Optional
- The decimal character used in decimal numbers.
thousands
:typing.Optional
- The thousands separator used in numbers.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.Ancestors
- BaseConfig
- pydantic.main.BaseModel
Class variables
var decimal : str | None
var delimiter : str | None
var model_config
var thousands : str | None
class FilterSettings (**data: Any)
-
Expand source code
class FilterSettings(BaseConfig): """Model for the filters. Parameters ---------- type: typing.Literal The type of filter: `exclusion` or `inclusion`. variable: builtins.str The columns name to be used for filtering. items: builtins.list The list of values to be used for filtering. """ type: Literal['exclusion', 'inclusion'] variable: str items: list[str]
Model for the filters.
Parameters
type
:typing.Literal
- The type of filter:
exclusion
orinclusion
. variable
:builtins.str
- The columns name to be used for filtering.
items
:builtins.list
- The list of values to be used for filtering.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.Ancestors
- BaseConfig
- pydantic.main.BaseModel
Class variables
var items : list[str]
var model_config
var type : Literal['exclusion', 'inclusion']
var variable : str
class GroupColumn (**data: Any)
-
Expand source code
class GroupColumn(Column): """Model for the group columns. Parameters ---------- dtype_str: typing.Optional The data type of the column. """ dtype_str: Optional[Literal['Character']] = None
Model for the group columns.
Parameters
dtype_str
:typing.Optional
- The data type of the column.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.Ancestors
- Column
- BaseConfig
- pydantic.main.BaseModel
Class variables
var dtype_str : Literal['Character'] | None
var model_config
class NewValue (**data: Any)
-
Expand source code
class NewValue(BaseConfig): """Model for the value data. Parameters ---------- first_variable: builtins.str The first variable name. operator: typing.Literal The operator that will be used to do the math operation between the first and second variable. second_variable: builtins.str The second variable name. new_variable: builtins.str The new variable name. unit: typing.Optional The unit. """ first_variable: str operator: Literal['x', '+', '-'] second_variable: str new_variable: str unit: Optional[str] = None
Model for the value data.
Parameters
first_variable
:builtins.str
- The first variable name.
operator
:typing.Literal
- The operator that will be used to do the math operation between the first and second variable.
second_variable
:builtins.str
- The second variable name.
new_variable
:builtins.str
- The new variable name.
unit
:typing.Optional
- The unit.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.Ancestors
- BaseConfig
- pydantic.main.BaseModel
Class variables
var first_variable : str
var model_config
var new_variable : str
var operator : Literal['x', '+', '-']
var second_variable : str
var unit : str | None
class TsCreationConfig (**data: Any)
-
Expand source code
class TsCreationConfig(BaseConfig): """Model for the time series creation configuration. Parameters ---------- time_granularity: typing.Literal Target granularity of the time series. start_date: typing.Optional Dates before this date are excluded. end_date: typing.Optional Dates after this date are excluded. grouping_level: builtins.list Names of group columns that should be used as the grouping level. filter: builtins.list Settings for including or excluding values during time series creation. new_variables: builtins.list New value column that is a combination of two other value columns. value_columns_to_save: builtins.list Value columns that should be saved. missing_value_handler: typing.Literal Strategy how to handle missing values during time series creation. """ time_granularity: Literal['yearly', 'quarterly', 'monthly', 'weekly', 'daily', 'hourly', 'halfhourly'] start_date: Optional[str] = None end_date: Optional[str] = None grouping_level: list[str] = [] filter: list[FilterSettings] = [] new_variables: list[NewValue] = [] value_columns_to_save: list[str] missing_value_handler: Literal['keepNaN', 'setToZero'] = 'keepNaN'
Model for the time series creation configuration.
Parameters
time_granularity
:typing.Literal
- Target granularity of the time series.
start_date
:typing.Optional
- Dates before this date are excluded.
end_date
:typing.Optional
- Dates after this date are excluded.
grouping_level
:builtins.list
- Names of group columns that should be used as the grouping level.
filter
:builtins.list
- Settings for including or excluding values during time series creation.
new_variables
:builtins.list
- New value column that is a combination of two other value columns.
value_columns_to_save
:builtins.list
- Value columns that should be saved.
missing_value_handler
:typing.Literal
- Strategy how to handle missing values during time series creation.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.Ancestors
- BaseConfig
- pydantic.main.BaseModel
Class variables
var end_date : str | None
var filter : list[FilterSettings]
var grouping_level : list[str]
var missing_value_handler : Literal['keepNaN', 'setToZero']
var model_config
var new_variables : list[NewValue]
var start_date : str | None
var time_granularity : Literal['yearly', 'quarterly', 'monthly', 'weekly', 'daily', 'hourly', 'halfhourly']
var value_columns_to_save : list[str]
class ValueColumn (**data: Any)
-
Expand source code
class ValueColumn(Column): """Model for the value columns. Parameters ---------- min: typing.Optional The set minimum value of the column. max: typing.Optional The set maximum value of the column. dtype_str: typing.Optional The data type of the column. unit: typing.Optional The unit of the column. """ min: Optional[int] = None max: Optional[int] = None dtype_str: Optional[Literal['Numeric', 'Integer']] = None unit: Optional[str] = None
Model for the value columns.
Parameters
min
:typing.Optional
- The set minimum value of the column.
max
:typing.Optional
- The set maximum value of the column.
dtype_str
:typing.Optional
- The data type of the column.
unit
:typing.Optional
- The unit of the column.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.Ancestors
- Column
- BaseConfig
- pydantic.main.BaseModel
Class variables
var dtype_str : Literal['Numeric', 'Integer'] | None
var max : int | None
var min : int | None
var model_config
var unit : str | None